A Note on a Kinetic Model for Rod-Like Particle Suspensions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kinetic Model for the Sedimentation of Rod-Like Particles

Abstract. We consider a kinetic multi-scale model, describing suspensions of rod-like particles, which couples a microscopic Smoluchowski equation for the distribution of rod orientations to a macroscopic Stokes or Navier-Stokes equation via an elastic stress tensor and a gravitational forcing term. A reciprocal coupling of phenomena on these different scales leads to the formation of clusters....

متن کامل

A Kinetic Model for Semidilute Bacterial Suspensions

Suspensions of self-propelled microscopic particles, such as swimming bacteria, exhibit collective motion leading to remarkable experimentally-observable macroscopic properties. Rigorous mathematical analysis of this emergent behavior can provide significant insight into the mechanisms behind these experimental observations; however, there are many theoretical questions remaining unanswered. In...

متن کامل

Global weak entropy solution to Doi–Saintillan–Shelley model for active and passive rod-like and ellipsoidal particle suspensions

Article history: Received 1 November 2011 Revised 14 August 2012 Available online xxxx MSC: 35Q30 35K55 35Q92 76D05 76T20

متن کامل

Multiscale simulations for suspensions of rod-like molecules

We study the Doi model for suspensions of rod–like molecules. The Doi model couples a microscopic Fokker–Planck type equation (Smoluchowski equation) to the macroscopic Stokes equation. The Smoluchowski equation describes the evolution of the distribution of the rod orientations; it comes as a drift–diffusion equation on the sphere at every point in physical space. For sufficiently high macrosc...

متن کامل

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2013

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2013.15002